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The process of heating or cooling of spherical lumps moving in a gas
counterflow is analyzed for cases when the strength of the heat sources
(sinks) is a linear function of the material temperature. By making a
simple substitution, the formulas obtained can be used to calculate the
heating of lump materials in a parallel gas flow.

The intensity of the heat release or heat absorption
that generally takes place in shaft furnace charges is
related to the rates of the physical and chemical
processes and the energies of the latter.

In thepresence of uniformly distributed heat sources
or sinks the problem of finding the temperature field
in a spherical particle and over the thickness of the
bed is considerably complicated. The problem was in-
vestigated in [1, 2], but the use of these results to an-
alyze the operation and design of industrial equipment
is not recommended, since the solution is presented
in avery generalform inconvenient for numerical cal-
culations. It should also bepointed out thatin a number
of practical cases of shaft furnace operation, the form
of the expressions obtained does not permit the use of
the results of calculations of the corresponding coeffi-
cients obtained for the problem of heating and cooling
of spherical particles in a counterflow without heat
sources [3,4].

The elimination of these shortcomings essentially
involves a new solution of the problem and its analysis.
It is to this task that the present article is devoted. We
note that solution and analysis of the problem are
also necessary to create a mathematical model of the
technical processes in moving-bed equipment.

We will consider the stationaryprocess. Inthis case
it is necessary to find the temperature field in one of
the particles as a function of time and also the gas
temperature variation over the thickness of the bed in
the presence of a heat source of strength q. In the
general case q depends on the concentration of reactants,
the reaction time, the activation energy, and otherfac-
tors. However, within a certain temperature interval
it is always possible to express q as a linear function
of the form

4 =40 +qt(’m—t;n)y

inwhichqy is the continuous source and q; is the intensity
of the source whose strength is proportional to the excess
temperature. |When heat is released in the treated
material qo and g;At arepositive; when heatis absorbed,
they are negative.

In dimensionless form the problem is described
mathematically by the heat conduction equation

2
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with boundary conditions: at the surface of the spheri-
cal particle
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at the center of the particle
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from the heat balance equation

08 = 3m ﬂ_ (4)
dFo o Jlp=13

and from the initial conditions
at Fo=0 ¢=0and 0= 1. (5)

The problem is solved by an operational method.
After carrying out a Laplace transformation with re-
spect to relative time (Fo), it is possible to obtain an
equation for the transform of the material temperature.
This has the form

- Po’
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c—Pos + {{Po’ — (s — Po)] x
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X (y's—Poch y/'s—Po—

JE— _ —1
—sh ¥'s—Po—ssh Vs——Po)} . (6)

Using the decay theorem [5]

f (s + @) > exp(—aFo) L-*[f(s)], (M

we obtain the inverse transform

=—

PO [P (e,
Po +[ Po + L {((Po —8) X
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i
-—sh y's)—(s + Pa)sh 1/3_]])“ }] exp (Po Fo). (8)

The expression in braces can be represented as a
ratio of generalized polynomials, for which the nu-
merator and denominator must be divided by vs.

After equating the denominator to zero, we obtain
a characteristic equation for determining the roots,
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from which it follows that sq = 0. Therefore, instead
of (8) we can write

¢ = — Po + exp (PoFo) L! {((Po’«—s)x
- Po
xiﬁﬁ.@)((m»—@)(ﬂ‘chﬁ_
05 Bi
~sh 3/5) — (s + Po)sh ;—s_) ‘1]. (9)

We must now determine and investigate the roofs of
the equation
( 3 S 4+ Po
Bi

)(V?cth_—shVE)~

— {5 4 Po)shy/s = 0. (10)

For the approximate caleulation of the first two
roots of the problem, it is possible to use the formula
obtained by solving the same problem by the Galerkin
method [6]:
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From this expression it follows that when Po < 0 both
roots are real, the first root having a plus sign and
the second a minus sign. As Po — 0, one real root
vanishes, while the second, as in the preceding case,
remains less than zero. In the presence of a positive
heat source(Po > 0) there may be either two real roots

or, if
3—3m —Po <-I~—+ l)]z <
{ Bi 6

< 12mPo (gj‘r—é), (12)
1

two complex conjugate roots. The latter condition is
approximate. Moreover, at certain values of m, Po,
and Bi, the roots may be double. Although the analysis
has been based on Eq. (11), it is completely applicable
to Eq. (10). We note, moreover, that all th- roots of
Eq. (10}, starting with the third, are negative and,
as the number of the roots increases, their values ap-
proach those corresponding to the problemwithoutheat
sources {Po' = Po = 0) [4].

To find the real negative roots we can write Eqg.
(10), assuming s = —u?, in the form

ign 3m

- , (13)
tgu—p  w—Po

} p—

Bi
which has a nondenumerable set of roots.

The real positive roots of the same equation must

be found from the expression obtained from (10) by
substituting vifor s:
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vethv—1 = (14)

From this equation it is clear that when Po > 0, there
may be two positive roots, a necessary condition of
the existence of these roots being 3m — (Po/Bi} > 0.
When Po < 0 the denominator of (14), 3m - (Po/Bi) —
- (V¥Bi), will always pass through zero, which is
consistent with the above analysis using (11).

In determining the real and imaginary parts of the

complex root* V5 = v + iy Eq. (10} is separated into

two equations:
Ky~ 12 (Bi —1)] thv —v (K, + 3p2) +
+ (Ks + pitgpthy + pKytgp =0, (15)
Ky —u*(Bi—Dltgp — (K, +3p) tguthv—
— w{Kz + ) —u kK, thv =10 {16}

For purposes of numerical calculations, Egqs. (15)
and (16) may be conveniently rewritten in the form

p® thv + p*{[thv(Bi —1) +3v] (Bi—1+3v thv) +
+ they (K, + Ky thv) + (K + Ky thv) ) —
— 2 {[th v (Bi—1) + 3v] (K; — Ky v thv) —
— (K + Ky thv) (K + K, thv) +
+ (Kythv — K, v) (Bi —1—3vihv)} +

+ (K thy — K, W (K — Ky vthv) =0 (in
and
24gp —
_ v(K,Bi+ 3y} —[K;Bi—p*(Bi —ithv
p(KsBi + p?ythy + p K, Bi
p(KsBi +p?) + pKyBithvy _0 (18)
Ky Bi—p?(Bi-—1) —v (K, Bi + 3u9)thwv ’

where

K, =3mBi -+ Po(Bi —1) 4 v*(Bi —1);
K,=3mBi—Po—+%
K, =3mBi— Po — 3v¥ K, =2v(1— Bi). (19)

It is easy to show that there are no complex roots
with a large real part. In fact, at large v (v > 4.0)
th v = cth v & 1.0, which after transformations gives
tgzu = —1, which, of course, is not possible.

The joint solution of Eqs. (17) and (18) makes it
possible to obtain the values of v and y. The numer-
ical calculations should be carried out in the following
order: first, expression (11) is used to determine the
real and imaginary parts of the complex conjugate root.

*If the complex conjugate roots of expression {11}
are denoted by s = § + io, then the following relations
will hold among 6, o, #, u:

5§ — Po=1t - % g = 2V,
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This makes possible a rough estimate of ¥ and u using
the relations presented above. The corresponding p
are determined from (17) by assigning several values
of v close to the approximate value. Then, by substi-
tuting the found v-p pairs into Eq. (18), one finds
(graphically, numerically) those ¥ and p that make the
left side of the equation vanish. It should be noted that
the complex roots calculated on the basis of (11) give
somewhat exaggerated values of v and u.

The transition from the transform (7) to the inverse
transform can be accomplished by means of the ex-
pansion theorem. Since the final form of the function &
depends on the type of roots of the characteristic equa-
tion, the relations presented below are classified ac-
cording to this principle.

a. Roots real, negative. This case corresponds to
Po > 0 and approximately [3 — 3m — Po(1/Bi + 1/6)]%
> 12m Po(1/Bi + 1/6). After transformations, takmg
5= —uz, we finally obtain for the material temperature

)

exp (—p2 Fo), (20)

Po
ﬁ——T—+exp(PoFo)Z(

. Siliap
P

where

. {un Po—u?,)
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The gas temperature can be found using (4) and (20):
60— l_3m 2 Po’ +p,,
“Po—p2 p2

x C, P, {exp[(Po— p2)Fo] — 1}, (21)

where

d)":_ p."COS]J,”:'SlI'lp,n .
W

Going over to the case when the strength of the con-
tinuous source is equal to zero (Po' = 0) does not pre-
sent any difficulties. From the previous analysis it
follows that when Po — 0 and Po' # 0 one of the roots
approaches zero. This makes it possible to substitute
series for the trigonometric functions in (13). Finally,
we obtain

o (am—Bo) 2
+ .+ 8 [(Bm Bi)(?n—H)!
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. n—2 1 N Po
2n—1Bi  (2n—1)

(2n+1)!]+ .o=0.  (22)

In view of the small values of s, it is sufficient to
confine ourselves to the second power only; this gives

ool 1 ko Py,
10 Bi 6 30Bi 51

+s [m_- - e (__+_)]—Po=o. (23)

The solution of this equation for small Po can be rep-
resented in the form

d d
SR U R 24
; k(+k2) a @4)
where
— Po
SR U S R WSS N Y
10 3(B1 2) <3OB1 5)
Po /1 | 1 - (25)
m—l—— [ — + —
- 3 (Bi+2)
m 11 1 T i
10 3(Bi+2) 0(3031+3?>

As py — 0(Po — 0) one of the terms of expression (20)
can be transformed to

So= [(Po’ 4 ¥ + Po’ (Po— p?) Fo—

’

— 0.1666p%0* Po’ — —%9— X
(6]

X (uta+ u?b— 0.5P0)} [n*a 4 p*b— 0.5Po}-t,  (26)

where

1
b= Po 4+ 0.25| — 1.5(m— 1).
(g5 +0%8) 18—
Substituting root (24) into (26) together with d and k
from (25), and letting Po approach zero, gives for the
particle temperature

9= — 1 —Po’ 3mBi —5Bi — 10
m—1 30 (m —1)?Bi

Po' p? | mPo’ Fo Po’
1
+ 6(m—1)f+ +E( + )

AN %"_ exp (—p2 Fo), (27)

where up are the roots of the characteristic equation

L = _ig__.pl___ 3_m : (28)
Bi tgp, —pn 2
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Inthe same way it is possible to obtain an expression
for the temperature of the gas flow 6 at Po = 0. How-~
ever, to calculate 6 at Po' # 0 and Po = 0, it is better
to use Eq. (4). Then

g=14 MPoFO o

m— 1
0 P .
XZK o
By
a=I1

When Po' = 0, expressions (27) and (29) goover to the
known solutions [3, 4, 7~9]. Moreover, the first three
roots up of Eq. (28) are presented in [3], together with
the coefficients &y, and (Cp)po=g of thefirstthree terms
of the power series (27) and (29} for calculating the
temperatures at the surface and center of the sphere
and the mass-averaged temperature In [3], moveover,
numerical values of p,, &, and(Cy)py=¢ are presented
for 14 ratios of flow specific heats m from 0.1 to 10.0
and 31 values of Bi from 0.02 to infinity.

b. First two roots positive, different. These cases
occur when Po > 0 and approximately Po(1/Bi + 1/6) >
> 3(1 — m). For the indicated cases s = ¥%, Then

. Po’ Po’ shv,0
se e [N (e e s

n=}

+ 1) (Coooo ®n [1—-exp(— 2 Fo)].  (29)

ww sin y,0
X exp(¥2 Fo) -+ L( +1) C, p!* x

Il

=3
X exp(— p? Fo)] exp (PoFo); (30)
2. Po— v2

n=1
X CyP, {exp [(Po + v2)Fo] — 1} +
Oy Po’ 4-p2
Po—u2

h=3

Cn‘Pn{exp[(PO—ui)FOI—l}}, (31)

where v, are the roots of the characteristic equation
(14) and pp, those of (13),

¢ Po 4 +2 v,,) "
Cv?:{(“%:‘—-l—ﬁ C ’Vn+
I Po 42 3 -1
+[: Bi (1—-— B )+—2— m—l} Shvn} M
shv, —v,chv,

D, =

When Po < 0 only the first root can be positive.
Therefore, in expressions (30) and (31) there will be
only one term with a positive root, and the infinite
sum must be taken from 2 to «.

As Po tends to zero, the root that is smaller in ab-
solute magnitude will also approach zero, while the
other root remains positive. In this case the passage
to the limit is the same as above. In particular, for
Po =0 and m > 1.0 the material temperature is de-
scribed by the equation
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_ 1 oy 3mBi—5Bi—10
m——1 30(m —1)*Bi
Po’ p* mPo'Fo |, [ Po
J . —1}x
Y T — T( 7 )
x (Cy) sh vp exp(v?Fo) + i <p_°'_;}_1\)x
v/po=
Po=0 o s !"';21
X Colpons Si“p“"" exp (—p2 Fo), (32)

and the gas temperature by the equation

mPo’ Fo

0=14
v m— 1

—3m X

—1

(€)oo Py [exp (W*Fo) — 1] —

(=
_2<

Values of ¥, ppn, (Cplpo=p» (Cp)po=pr ®v» ¥p» re-
quired to calculate the temperature fields from Eqgs.
(32) and (33) are presented in [3].

c. Roots complex. Roots of the type Vs = v = iy ap~-
pear when Po > 0 and inequality (12) holds. The tem-
perature of the heated particles is found from the
exXpression

) (Copoo Pn lexp (— p2Fo) —111 . (33)

__Po n 2exp (A Fo) (UM + DN
Po | M +N? PR

DM —

X cos 2pvFo — i sin 2puv Fo) +

~2( P:2 +1) cfﬂlg*—" exp[(Po —p2) Fol.  (34)

n

n=3

The quantity 6 must be determined from Eq. (4).
Thus,

6mA(QM + EN) + 2uv(EM — QN) y

0=1
N (M* + N (A -+ 4p27)

X {exp (AFo) [cos 2uv Fo—

_ A(EM —QN)—2uv (QM + EN)
A(QM + EN) + 2uv (EM —QN)

© pol +H2
—1l Zﬁ 1
1} 3m Po— g2 X

sin 2uv Fo] =

n=3
x C, P, (exp[(Po —p2)Fol —1). (35)
Here,
A = Po -+ +? —p,2 M= (V—u )M, — 2uvNy;
= (v} — ) N + 2uv M;;
M= é [(I—Bi —0.54 + 1.6mBi)shvcosp +

0.5Po Bi

+pwchvsinu—(1+ —-+0.5 Bx)vchvx
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X COS {1 - ( 1— £5 POBL- +05B1) HSh’V-Sinp,] ;
n?

Vi 4+

N=-L1 [( I— Bi—0.54 +
Bi

4-1.bmBi)chvsinp —pvshvcosp —

—(1—]—%5——120—]3—1-}-05B1)vshvsinp~—
V2 u?

0.5 PoBi
—| l—=—=———-+05Bi| uchvcosp | ;
1258 50w

= [Po’ — (v* —p¥] sh vp cos pp - 2uv ch vp sin pp;
= [Po’ — (v — u®) chvp sinpp + 2uv shvp cos pp;
Q = [P0’ —(v*— pH1 Q, + 2uv Ey;
= [P0’ — (v — p3)] E; — 2uv Qy;
=wvshvsinp + pchvcosp— chvsinp;

E;=vchvcosp —pshvsiny —shvcosp.

The coefficients ¥ and y are roots of Egs. (15) and
(16). The existence of complex roots and the form of
Eqs. (34) and (35) indicate the wave character of the
temperature variations of the particles and the gas
over the-thickness of the bed.

d. Root double. Analysis shows that the double root
may be both positive andnegative. Inthis caseinorder
to determine the inverse transform it is convenient to
use the expansion theorem [5] in the form

4 P (s—sy)

f2(Fo) = lim - exp (s Fo). (36)

s~sp ds P (sm)

If sy, = V¥ the temperature field of the particle is
described by the following equation:

Po’ 2(Po” —v¥) [P cthop

G = —
Po + P (v) \ 2v
. P (V) . Fo) sh vp~ y
3P (v) Po —w? 0

X exp[(Po + v?) Fo] + ( 110; + 1) X

n=3

xC, ﬁmp"—" exp [(Po — p2) Fol, (37)

and the temperature of the gas flow by the equation

2(Po" — v @,

=143
T 9 ®o + 9

shy 9" (v) 1,
x [(sz(ﬁv Ty TPo—v Po+v2) X
x {exp [(Po + v¥) Fo] —1} — Foexp [(Po + v¥ Fo]] —

— P
_3'”2 O-HL" C, @, (exp[(Po —p2) Fol —1).  (38)

n=3

In these expressions

V) — % {1— Bi —0.5Po —0.25P0 Bi -
1
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+ % [v (0.75m Bi —0.5—1.25Bi — 0.25Po) —
1

Po Bi
v

—0.25

—0. 25v3} chwv;

1p”’ W) = T;‘ (0.5 (0.75m Bi —0.5—1.25Bi —

—0.95P0) — o 1252 °B‘
|

|
—0.95Bijshv -+ % [0.5 (0.75m Bi —0.25P0 Bi +-
1

— 0.125v® —1.5—

+{0.5—2.95Bi 1. 5Po) L o195 2B

0.1%5vBi — 1195y + 0.75 mBl] chwv.

v

If sy = —p? then in Egs. (37) and (38) it is neces-
sary to substitute iy for ¥ and go over from hyperbolic
to trigonometric functions, in accordance with the
usual rules.

The application of the equations obtained is illus-
trated by the results of calculations of the temperature
distribution over the thickness of the bed for the fol-
lowing conditions: m = 0.8; Bi = 2.0; and Po = Po =
= 0.15.

In this case calculation of inequality (12) points to
the existence of complex conjugate roots, whose value,
in accordance with (11), is approximately equal to
Vapp = 0.3851 and pgpp = 0.8205. A more accurate
determination of ¥ and y from the transcendental equa-
tions (15) and (186) finally gives ¥ = 0.38480 and u =
= 0.8068. The subsequent roots are p3 = 7.9619 and

g = 11.0785.

The variation of the gas temperature and the tempera-
tures at the surface and center of the particle are shown
in the figure. As follows from the figure, the process
can be divided into two periods: heating and cooling.
Each has its own specific temperature distributionover
the cross section of the particle, created by the action
of the heat sources. In the first period the charge is
rapidly heated and toward the end of this period heat
transfer between the charge and the gas slows down.
At time Fo = 1.109, which is found from the joint solu-
tion of Egs. (25) and (24) for p = 1.0, the temperature
of the gas and the surface temperature of the particle
are equal. Somewhat later (Fo = 1.322) the tempera-
tures at the center and at the surface of the particle
become the same. This moment is established by solv-
ing the equations obtained from (34) with p =0 and p =
= 1.0. During this time the temperature field of the
particle undergoes a deformation that ends AFo = 1.0
from the moment of temperature equalization.

The case in question is characterized by damping
of the temperature oscillations, since the exponent of
the exponential function Po + v — uz is negative. In
the presence of high-strength heat sources continuous
oscillations may appear. The natureof thetemperature
field in the bed (figure) indicates that temperatures
higher than those on the inlet and outlet sections may
develop in the apparatus.
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Temperature variation over the thickness
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of the particle.

The equations describing the distribution of particle
and gas temperatures over the thickness of the bed will
also be valid for calculating the heating of spherical
particles in a parallel flow, if the ratio m of flow
specific heats (water equivalents) is replaced by minus
m.

NOTATION

t is the temperature; p is the relative coordinate;
R is the particle radius; « is the heat-transfer coef-
ficient; A is the thermal conductivity; a is the thermal
diffusivity; 7 is the timefrom the moment theparticles
are loaded into the bed; H is the thickness of the bed;
w is the velocuty of the partlcles in the bed; & = (t,;
— th)/ (k3 = tm); 6 = (tg = tm)/(tF = t1y) are the tem-
perature criteria for the material and the gas flows;
Bi = aR/Apy is the Biot number; Fo = a7/R% = aH/me2
is the Fourier number; Po! = —gyR%/ Ay (t;g tm); Po =
=qR 2 Am isthe Pomerantsev number; g is the strength
of the continuous source; qi is the source whose
strength is proportional to the excess temperature.
The subscripts m and g indicate that the quantity in
question relates to the material or the gas; single and
double primes denote parameters characterizing the
state of the medium on the inlet and outlet sides, re-
spectively.
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